Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Neurosurg Rev ; 47(1): 144, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594575

RESUMO

Recent studies suggest that differential DNA methylation could play a role in the mechanism of cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). Considering the significance of this matter and a lack of effective prophylaxis against DCI, we aim to summarize the current state of knowledge regarding their associations with DNA methylation and identify the gaps for a future trial. PubMed MEDLINE, Scopus, and Web of Science were searched by two authors in three waves for relevant DNA methylation association studies in DCI after aSAH. PRISMA checklist was followed for a systematic structure. STROBE statement was used to assess the quality and risk of bias within studies. This research was funded by the National Science Centre, Poland (grant number 2021/41/N/NZ2/00844). Of 70 records, 7 peer-reviewed articles met the eligibility criteria. Five studies used a candidate gene approach, three were epigenome-wide association studies (EWAS), one utilized bioinformatics of the previous EWAS, with two studies using more than one approach. Methylation status of four cytosine-guanine dinucleotides (CpGs) related to four distinct genes (ITPR3, HAMP, INSR, CDHR5) have been found significantly or suggestively associated with DCI after aSAH. Analysis of epigenetic clocks yielded significant association of lower age acceleration with radiological CVS but not with DCI. Hub genes for hypermethylation (VHL, KIF3A, KIFAP3, RACGAP1, OPRM1) and hypomethylation (ALB, IL5) in DCI have been indicated through bioinformatics analysis. As none of the CpGs overlapped across the studies, meta-analysis was not applicable. The identified methylation sites might potentially serve as a biomarker for early diagnosis of DCI after aSAH in future. However, a lack of overlapping results prompts the need for large-scale multicenter studies. Challenges and prospects are discussed.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/genética , Metilação de DNA , Infarto Cerebral/complicações , Isquemia Encefálica/genética , Isquemia Encefálica/complicações , Biomarcadores , Vasoespasmo Intracraniano/genética , Vasoespasmo Intracraniano/complicações , Proteínas Relacionadas a Caderinas
2.
Cell Mol Neurobiol ; 44(1): 41, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656449

RESUMO

The cadherin family plays a pivotal role in orchestrating synapse formation in the central nervous system. Cadherin-related family member 1 (CDHR1) is a photoreceptor-specific calmodulin belonging to the expansive cadherin superfamily. However, its role in traumatic brain injury (TBI) remains largely unknown. CDHR1 expression across various brain tissue sites was analyzed using the GSE104687 dataset. Employing a summary-data-based Mendelian Randomization (SMR) approach, integrated analyses were performed by amalgamating genome-wide association study abstracts from TBI with public data on expressed quantitative trait loci and DNA methylation QTL from both blood and diverse brain tissues. CDHR1 expression and localization in different brain tissues were meticulously delineated using western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay. CDHR1 expression was consistently elevated in the TBI group compared to that in the sham group across multiple tissues. The inflammatory response emerged as a crucial biological mechanism, and pro-inflammatory and anti-inflammatory factors were not expressed in either group. Integrated SMR analyses encompassing both blood and brain tissues substantiated the heightened CDHR1 expression profiles, with methylation modifications emerging as potential contributing factors for increased TBI risk. This was corroborated by western blotting and immunohistochemistry, confirming augmented CDHR1 expression following TBI. This multi-omics-based genetic association study highlights the elevated TBI risk associated with CDHR1 expression coupled with putative methylation modifications. These findings provide compelling evidence for future targeted investigations and offer promising avenues for developing interventional therapies for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Caderinas , Metilação de DNA , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Humanos , Masculino , Metilação de DNA/genética , Caderinas/genética , Caderinas/metabolismo , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Relacionadas a Caderinas
3.
Genet Test Mol Biomarkers ; 28(3): 123-130, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38546281

RESUMO

Objective: This study aims to identify causal variants associated with vitiligo in an expanded region of 10q22.1. Materials and Methods: We conducted a fine-scale deep analysis of the expanded 10q22.1 region using in a large genome-wide association studies dataset consisting of 1117 cases and 1701 controls through imputation. We selected five nominal coding single nucleotide polymorphisms (SNPs) located in SLC29A3 and CDH23 and genotyped them in an independent cohort of 2479 cases and 2451 controls in a Chinese Han population cohort using the Sequenom MassArray iPLEX1 system. Results: A missense SNP in SLC29A3, rs2252996, showed strong evidence of association with vitiligo (p = 1.34 × 10-8, odds ratio [OR] = 0.82). Three synonymous SNPs (rs1084004 in SLC29A3; rs12218559 and rs10999978 in CDH23) provided suggestive evidence of association for vitiligo (p = 1.69 × 10-6, OR = 0.84; p = 9.47 × 10-5, OR = 1.18; p = 6.90 × 10-4, OR = 1.16, respectively). Stepwise conditional analyses identified two significant independent disease-associated signals from the four SNPs (both p < 0.05; both D' = 0.03; and r2 = 0.00). Conclusion: The study identifies four genetic coding variants in SLC29A3 and CDH23 on 10q22.1 that may contribute to vitiligo susceptibility with one missense variant affecting disease subphenotypes. The presence of multiple genetic variants underscores their significant role in the genetic pathogenesis of the disease.


Assuntos
Proteínas Relacionadas a Caderinas , Proteínas de Transporte de Nucleosídeos , Vitiligo , Humanos , China , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Transporte de Nucleosídeos/genética , Vitiligo/genética , População do Leste Asiático , Proteínas Relacionadas a Caderinas/genética
4.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540785

RESUMO

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.


Assuntos
Degeneração Macular , Humanos , Mutação , Penetrância , Linhagem , Degeneração Macular/genética , Retina , Fenótipo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas do Olho , Proteínas Relacionadas a Caderinas , Proteínas do Tecido Nervoso/genética
5.
Elife ; 122024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470230

RESUMO

In the process of synaptic formation, neurons must not only adhere to specific principles when selecting synaptic partners but also possess mechanisms to avoid undesirable connections. Yet, the strategies employed to prevent unwarranted associations have remained largely unknown. In our study, we have identified the pivotal role of combinatorial clustered protocadherin gamma (γ-PCDH) expression in orchestrating synaptic connectivity in the mouse neocortex. Through 5' end single-cell sequencing, we unveiled the intricate combinatorial expression patterns of γ-PCDH variable isoforms within neocortical neurons. Furthermore, our whole-cell patch-clamp recordings demonstrated that as the similarity in this combinatorial pattern among neurons increased, their synaptic connectivity decreased. Our findings elucidate a sophisticated molecular mechanism governing the construction of neural networks in the mouse neocortex.


Assuntos
Proteínas Relacionadas a Caderinas , Neocórtex , Animais , Camundongos , Caderinas/genética , Redes Neurais de Computação
6.
Pediatr Allergy Immunol ; 35(1): e14067, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284918

RESUMO

Wheezing is a common and heterogeneous condition in preschool children. In some countries, the prevalence can be as high as 30% and up to 50% of all children experience wheezing before the age of 6. Asthma often starts with preschool wheeze, but not all wheezing children will develop asthma at school age. At this moment, it is not possible to accurately predict which wheezing children will develop asthma. Recently, studying the genetics of wheeze and the childhood-onset of asthma have grown in interest. Childhood-onset asthma has a stronger heritability in comparison with adult-onset asthma. In early childhood asthma exacerbations, CDHR3, which encodes the receptor for Rhinovirus C, was identified, as well as IL33, and the 17q locus that includes GSDMB and ORMDL3 genes. The 17q locus is the strongest wheeze and childhood-onset asthma locus, and was shown to interact with many environmental factors, including smoking and infections. Finally, ANXA1 was recently associated with early-onset, persistent wheeze. ANXA1 may help resolve eosinophilic inflammation. Overall, despite its complexities, genetic approaches to unravel the early-onset of wheeze and asthma are promising, since these shed more light on mechanisms of childhood asthma-onset. Implicated genes point toward airway epithelium and its response to external factors, such as viral infections. However, the heterogeneity of wheeze phenotypes complicates genetic studies. It is therefore important to define accurate wheezing phenotypes and forge larger international collaborations to gain a better understanding of the pathways underlying early-onset asthma.


Assuntos
Asma , Sons Respiratórios , Adulto , Pré-Escolar , Humanos , Sons Respiratórios/genética , Instituições Acadêmicas , Asma/epidemiologia , Asma/genética , Proteínas de Neoplasias , Fenótipo , Proteínas Relacionadas a Caderinas , Proteínas de Membrana
8.
Ophthalmic Res ; 67(1): 9-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38091967

RESUMO

INTRODUCTION: The objective of this study was to investigate the clinical characteristics and genetic spectrum of adult-onset cone/cone-rod dystrophy (AOCD/AOCRD) in Korean individuals. METHODS: This is a single-center, retrospective cross-sectional study. We analyzed 22 individuals with genetically confirmed cone dystrophy, with symptoms beginning after 30 years of age. All patients underwent comprehensive ophthalmic and electrophysiological examinations. Exome sequencing of 296 genes associated with inherited retinal disease was performed. The clinical features of patients with AOCD/AOCRD and the causative genes and variants detected by exome sequencing were analyzed. RESULTS: The median age at the first visit was 52 years (range, 31-76 years), and the most common initial symptom was reduced visual acuity. In most cases, fundus photography showed a bull's eye pattern with foveal sparing, consistent with perifoveal photoreceptor loss on optical coherence tomography. We identified disease-causing variants in six genes: RP1, CRX, CDHR1, PROM1, CRB1, and GUCY2D. Pathogenic variants in RP1, CRX, and CDHR1 were identified in 77% of the AOCD/AOCRD cases, including p.Cys1399LeufsTer5, p.Arg1933Ter, and p.Ile2061SerfsTer12 in RP1; p.Ter300GlnextTer118 in CRX; and p.Glu201Lys in CDHR1. No characteristic imaging differences were observed for any of the causative genes. Most of the RP1-related AOCD/AOCRD cases showed a decreased amplitude only in the photopic electroretinogram (ERG), whereas CRX-related AOCD/AOCRD cases showed a slightly decreased amplitude in both the scotopic and photopic ERGs. CONCLUSION: In case of visual impairment with bull's eye pattern of RPE atrophy recognized after the middle age, a comprehensive ophthalmic examination and genetic test should be considered, with the possibility of AOCD/AOCRD in East Asians.


Assuntos
Distrofias de Cones e Bastonetes , Adulto , Pessoa de Meia-Idade , Humanos , Idoso , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Estudos Retrospectivos , Estudos Transversais , Linhagem , Mutação , Eletrorretinografia , Tomografia de Coerência Óptica , Fenótipo , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Relacionadas a Caderinas
9.
Neoplasma ; 70(5): 683-696, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38053380

RESUMO

Retinal G protein-coupled receptor (RGR) serves a retinal photoisomerase function to mediate retinoid metabolism and visual chromophore regeneration in the human eyes. Retinoids display critical functions in cell proliferation, differentiation, and apoptosis. Abnormal retinoid metabolism may contribute to tumor development. However, in human tumor tissues, the expression of RGR remains uncharacterized. Herein, we performed the analysis of RGR expression in 620 samples from 24 types of tumors by immunohistochemistry (IHC) and 33 cancer types from the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases by bioinformatic analyses. Furthermore, the biological role of RGR in glioma cells was investigated using molecular biology approaches in vitro. Notably, we found that brain lower grade glioma (LGG), in contrast to other tumor types, had the highest median score of IHC and RNA level of RGR expression. Survival analysis showed that low RGR expression was associated with worse overall survival in LGG (p<0.0001). RGR expression levels in glioma were also associated with pathological subtypes, grades, and isocitrate dehydrogenase (IDH) mutations. Moreover, its molecular function was closely associated with cadherin-related family member 1 (CDHR1), a tumor suppressive protein in glioma, suggesting that RGR might negatively regulate the tumorigenesis and progression of LGG through interacting with CDHR1. Our findings provide new insight into the role of RGR in human cancer, especially in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patologia , Proteínas Relacionadas a Caderinas , Regulação para Baixo , Glioma/patologia , Proteínas do Tecido Nervoso/genética , Opsinas/genética , Opsinas/metabolismo , Prognóstico , Retinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
J Allergy Clin Immunol Pract ; 11(7): 2162-2171.e6, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146879

RESUMO

BACKGROUND: All children experience numerous episodes of illness during the first 3 years of life. Most episodes are mild and handled without medical attention but nevertheless burden the families and society. There is a large, and still unexplained, variation in the burden of illness between children. OBJECTIVE: To describe and provide a better understanding of the disease burden of common childhood diseases through a data-driven approach investigating the communalities between symptom patterns and predefined variables on predispositions, pregnancy, birth, environment, and child development. METHODS: The study is based on the prospectively followed clinical mother-child cohort COpenhagen Prospective Studies on Asthma in Childhood, which includes 700 children with daily symptom registration in the first 3 years of life, including symptoms of cough, breathlessness, wheeze, cold, pneumonia, sore throat, ear infections, gastrointestinal infections, fever, and eczema. First, we described the number of episodes of symptoms. Next, factor analysis models were used to describe the variation in symptom load in the second year of life (both based on n = 556, with >90% complete diary). Then we characterized patterns of similarity between symptoms using a graphical network model (based on n = 403, with a 3-year monthly compliance of >50%). Finally, predispositions and pregnancy, birth, environmental, and developmental factors were added to the network model. RESULTS: The children experienced a median of 17 (interquartile range, 12-23) episodes of symptoms during the first 3 years of life, of which most were respiratory tract infections (median, 13; interquartile range, 9-18). The frequency of symptoms was the highest during the second year of life. Eczema symptoms were unrelated to the other symptoms. The strongest association to respiratory symptoms was found for maternal asthma, maternal smoking during the third trimester, prematurity, and CDHR3 genotype. This was in contrast to the lack of associations for the well-established asthma locus at 17q21. CONCLUSIONS: Healthy young children are burdened by multiple episodes of symptoms during the first 3 years of life. Prematurity, maternal asthma, and CDHR3 genotype were among the strongest drivers of symptom burden.


Assuntos
Asma , Eczema , Gravidez , Feminino , Humanos , Pré-Escolar , Estudos Prospectivos , Asma/epidemiologia , Asma/genética , Estudos de Coortes , Dispneia , Eczema/epidemiologia , Sons Respiratórios , Proteínas Relacionadas a Caderinas , Proteínas de Membrana
11.
Audiol Neurootol ; 28(4): 317-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37088079

RESUMO

INTRODUCTION: Usher syndrome (USH) is an autosomal recessive disorder that predominantly affects hearing, vision, and, in some cases, vestibular function. USH, according to the onset age, severity, and progression of symptoms, is categorized into four main types. In addition, there are a significant number of reports that patients' manifestations deviate from canonical phenotypic criteria of main types of USH, which are named atypical USH. CDH23 is the second most common USH gene in which its defects result in USH1D, non-syndromic autosomal recessive deafness-12 (DFNB12), and in a few cases, atypical USH1D. While some studies have suggested that missense and truncating damaging variants in the CDH23 gene cause DFNB12 and USH1D, respectively, no genotype-phenotype correlation for atypical USH1D has been established. METHODS: Using whole-exome sequencing, we studied an Iranian family with two affected siblings who manifested congenital bilateral hearing loss, late-onset nyctalopia, retinitis pigmentosa, and normal vestibular function, indicating that their clinical symptoms are consistent with USH2. RESULTS: Whole-exome data analysis revealed a novel bi-allelic nonsense variant (c.6562G>T; p.Glu2188Ter) in the CDH23 gene, which was confirmed by Sanger sequencing. Surprisingly, CDH23 is a member of the USH1 genes; therefore, our patients suffered from atypical USH1D. Also, by conducting a literature review, we provided a clinical and mutational profile of all reported patients with atypical manifestations or those who refuted the claimed genotype-phenotype correlation. CONCLUSION: By reporting a novel damaging variant, we expand the mutational spectrum of the CDH23 gene that leads to atypical USH1D. Also, reviewing the literature shows that, contrary to previous claims, different genotypes occur in the CDH23 gene allelic disorders, and there is no clear-cut genotype-phenotype correlation.


Assuntos
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Irã (Geográfico) , Proteínas Relacionadas a Caderinas , Mutação , Fenótipo
12.
Nat Commun ; 14(1): 2400, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100771

RESUMO

Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.


Assuntos
Orelha Interna , Síndromes de Usher , Animais , Camundongos , Caderinas/metabolismo , Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Audição/genética , Síndromes de Usher/genética , Síndromes de Usher/terapia , Proteínas Relacionadas a Caderinas/metabolismo
13.
J Infect Dis ; 228(8): 990-998, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36967681

RESUMO

BACKGROUND: Genome-wide association studies have identified several risk alleles for early childhood asthma, particularly in the 17q21 locus and in the cadherin-related family member 3 (CDHR3) gene. Contribution of these alleles to the risk of acute respiratory tract infections (ARI) in early childhood is unclear. METHODS: We analyzed data from the STEPS birth-cohort study of unselected children and the VINKU and VINKU2 studies on children with severe wheezing illness. Genome-wide genotyping was performed on 1011 children. We analyzed the association between 11 preselected asthma risk alleles and the risk of ARIs and wheezing illnesses of various viral etiologies. RESULTS: The asthma risk alleles in CDHR3, GSDMA, and GSDMB were associated with an increased rate of ARIs (for CDHR3, incidence rate ratio [IRR], 1.06; 95% confidence interval [CI], 1.01-1.12; P = .02), and risk allele in CDHR3 gene with rhinovirus infections (IRR, 1.10; 95% CI, 1.01-1.20, P = .03). Asthma risk alleles in GSDMA, GSDMB, IKZF3, ZPBP2, and ORMDL3 genes were associated with wheezing illnesses in early childhood, especially rhinovirus-positive wheezing illnesses. CONCLUSIONS: Asthma risk alleles were associated with an increased rate of ARIs and an increased risk of viral wheezing illnesses. Nonwheezing and wheezing ARIs and asthma may have shared genetic risk factors. Clinical Trials Registration. NCT00494624 and NCT00731575.


Assuntos
Asma , Infecções Respiratórias , Humanos , Criança , Pré-Escolar , Alelos , Estudos de Coortes , Sons Respiratórios/genética , Estudo de Associação Genômica Ampla , Asma/epidemiologia , Asma/genética , Infecções Respiratórias/complicações , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/genética , Proteínas do Ovo/genética , Proteínas de Membrana/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Relacionadas a Caderinas
14.
Nat Commun ; 14(1): 891, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797229

RESUMO

The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.


Assuntos
Caderinas , Polaridade Celular , Proteínas Supressoras de Tumor , Humanos , Caderinas/química , Proteínas Supressoras de Tumor/química , Proteínas Relacionadas a Caderinas/química
15.
Medicina (Kaunas) ; 59(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837600

RESUMO

Background: Cone-rod dystrophies (CRDs) are a heterogeneous group of inherited retinal diseases (IRDs) characterized by cone photoreceptor loss, that is followed by subsequent rod photoreceptor impairment. Case presentation: A 49-year-old man complaining of diminution of vision in both eyes (OU) was referred to our outpatient clinic. He reported visual loss for 5 years, but it was most progressive during the last few months. The best-corrected visual acuity (BCVA) at presentation was 0.4 in the right eye (RE) and 1.0 in the left eye (LE). Fundus fluorescein angiography (FFA) revealed granular hyperfluorescence in the macula and concomitant areas of capillary atrophy. Flash full-field electroretinography (ffERG) showed lowering of a and b waves as well as prolonged peak time in light-adapted conditions. However, outcomes of dark-adapted ERGs were within normal limits. Based on the constellation of clinical, angiographic, and electrophysiological tests findings, a diagnosis of IRD was suspected. Genetic testing showed a homozygous, pathogenic c.783G>A mutation in the cadherin-related family member 1 (CDHR1) gene, which confirmed CRD type 15 (CRD15). Conclusions: We demonstrate the clinical characteristics, retinal imaging outcomes, and genetic test results of a patient with CRD15. Our case contributes to expanding our knowledge of the clinical involvement of the pathogenic mutation c.783G>A in CDHR1 variants.


Assuntos
Distrofias de Cones e Bastonetes , Masculino , Humanos , Pessoa de Meia-Idade , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Tomografia de Coerência Óptica , Retina , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Mutação , Testes Genéticos , Proteínas Relacionadas a Caderinas , Proteínas do Tecido Nervoso/genética
16.
Front Endocrinol (Lausanne) ; 14: 1302074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327905

RESUMO

Background: Radiotherapy plays a crucial role in the management of Cervical cancer (CC), as the development of resistance by cancer cells to radiotherapeutic interventions is a significant factor contributing to treatment failure in patients. However, the specific mechanisms that contribute to this resistance remain unclear. Currently, molecular targeted therapy, including mitochondrial genes, has emerged as a new approach in treating different types of cancers, gaining significant attention as an area of research in addressing the challenge of radiotherapy resistance in cancer. Methods: The present study employed a rigorous screening methodology within the TCGA database to identify a cohort of patients diagnosed with CC who had received radiotherapy treatment. The control group consisted of individuals who demonstrated disease stability or progression after undergoing radiotherapy. In contrast, the treatment group consisted of patients who experienced complete or partial remission following radiotherapy. Following this, we identified and examined the differentially expressed genes (DEGs) in the two cohorts. Subsequently, we conducted additional analyses to refine the set of excluded DEGs by employing the least absolute shrinkage and selection operator regression and random forest techniques. Additionally, a comprehensive analysis was conducted in order to evaluate the potential correlation between the expression of core genes and the extent of immune cell infiltration in patients diagnosed with CC. The mitochondrial-associated genes were obtained from the MITOCARTA 3.0. Finally, the verification of increased expression of the mitochondrial gene TMEM38A in individuals with CC exhibiting sensitivity to radiotherapy was conducted using reverse transcription quantitative polymerase chain reaction and immunohistochemistry assays. Results: This process ultimately led to the identification of 7 crucial genes, viz., GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2, which were strongly associated with radiotherapy sensitivity. The enrichment analysis has unveiled a significant association between these 7 crucial genes and prominent signaling pathways, such as the p53 signaling pathway, KRAS signaling pathway, and PI3K/AKT/MTOR pathway. By utilizing these 7 core genes, an unsupervised clustering analysis was conducted on patients with CC, resulting in the categorization of patients into three distinct molecular subtypes. In addition, a predictive model for the sensitivity of CC radiotherapy was developed using a neural network approach, utilizing the expression levels of these 7 core genes. Moreover, the CellMiner database was utilized to predict drugs that are closely linked to these 7 core genes, which could potentially act as crucial agents in overcoming radiotherapy resistance in CC. Conclusion: To summarize, the genes GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2 were found to be closely correlated with the sensitivity of CC to radiotherapy. Notably, TMEM38A, a mitochondrial gene, exhibited the highest degree of correlation, indicating its potential as a crucial biomarker for the modulation of radiotherapy sensitivity in CC.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Algoritmos , Proteínas Relacionadas a Caderinas , Genes Mitocondriais , Marcadores Genéticos , Proteínas do Tecido Nervoso , Fosfatidilinositol 3-Quinases , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia
17.
Artigo em Inglês | MEDLINE | ID: mdl-36141853

RESUMO

Cadherin 12 (CDH 12) can play a role in the pathogenesis of endometriosis. The aim of this study was to compare the levels of cadherin 12 in the peritoneal fluid between women with and without endometriosis. This was a multicenter cross-sectional study. Eighty-two patients undergoing laparoscopic procedures were enrolled in the study. Cadherin 12 concentrations were determined using the enzyme-linked immunosorbent assay. The level of statistical significance was set at p < 0.05. No differences in cadherin 12 concentrations between patients with and without endometriosis were observed (p = 0.4). Subgroup analyses showed that CDH 12 concentrations were significantly higher in patients with infertility or primary infertility and endometriosis in comparison with patients without endometriosis and without infertility or primary infertility (p = 0.02) and also higher in patients with stage I or II endometriosis and infertility or primary infertility than in patients without endometriosis and infertility or primary infertility (p = 0.03, p = 0.048, respectively). In total, CDH 12 levels were significantly higher in patients diagnosed with infertility or primary infertility (p = 0.0092, p = 0.009, respectively) than in fertile women. Cadherin 12 can possibly play a role in the pathogenesis of infertility, both in women with and without endometriosis.


Assuntos
Proteínas Relacionadas a Caderinas/metabolismo , Endometriose , Infertilidade Feminina , Líquido Ascítico/patologia , Caderinas , Estudos Transversais , Endometriose/complicações , Feminino , Humanos , Infertilidade Feminina/etiologia
18.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897674

RESUMO

Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, ß, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.


Assuntos
Neoplasias Encefálicas , Proteínas Relacionadas a Caderinas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Proteínas Relacionadas a Caderinas/genética , Caderinas/genética , Caderinas/metabolismo , Glioblastoma/genética , Glioma/genética , Humanos , Intervalo Livre de Progressão , Protocaderinas , RNA Mensageiro
19.
Cell Rep ; 40(2): 111061, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830793

RESUMO

Although frameshift mutations lead to 22% of inherited Mendelian disorders in humans, there is no efficient in vivo gene therapy strategy available to date, particularly in nondividing cells. Here, we show that nonhomologous end-joining (NHEJ)-mediated nonrandom editing profiles compensate the frameshift mutation in the Pcdh15 gene and restore the lost mechanotransduction function in postmitotic hair cells of Pcdh15av-3J mice, an animal model of human nonsyndromic deafness DFNB23. Identified by an ex vivo evaluation system in cultured cochlear explants, the selected guide RNA restores reading frame in approximately 50% of indel products and recovers mechanotransduction in more than 70% of targeted hair cells. In vivo treatment shows that half of the animals gain improvements in auditory responses, and balance function is restored in the majority of injected mutant mice. These results demonstrate that NHEJ-mediated reading-frame restoration is a simple and efficient strategy in postmitotic systems.


Assuntos
Proteínas Relacionadas a Caderinas , Perda Auditiva Neurossensorial , Precursores de Proteínas , Animais , Sistemas CRISPR-Cas , Proteínas Relacionadas a Caderinas/genética , Modelos Animais de Doenças , Edição de Genes , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Humanos , Mecanotransdução Celular , Camundongos , Precursores de Proteínas/genética
20.
Ann Hum Biol ; 49(1): 41-53, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35786118

RESUMO

BACKGROUND: NIHL is one of the most common occupational diseases induced by gene-environment interaction. The CDH23 gene is a candidate gene related to NIHL susceptibility. However, the relationship between CDH23 gene and NIHL is still inconclusive. AIM: To clarify the association between CDH23 gene and NIHL, a meta-analysis was performed. SUBJECTS AND METHODS: A search in MEDLINE, PubMed, Web of Science, EBSCO, China National Knowledge Infrastructure (CNKI), and Wanfang Data was implemented to collect data. RESULTS AND CONCLUSIONS: Six studies were eventually included and all the subjects were Chinese. The results showed that rs1227051, rs1227049, and rs3752752 were not associated with NIHL susceptibility under five genetic models. But rs3802711 reduced the risk of NIHL under the recessive model, and the BB genotype and B allele of rs3802711 were significantly linked to NIHL under recessive, super-dominant, homozygote, and allele genetic models when stratified by the HWE result. Moreover, when not conform to HWE, the BB + AB genotypes and B allele of Exon7 in dominant, super-dominant, homozygote, and allele genetic model increased the risk of NIHL. CDH23 may be a potential gene marker for the prevention and early screening of NIHL in Chinese. Further large and well-designed studies are needed to confirm this association.


Assuntos
Perda Auditiva Provocada por Ruído , Povo Asiático , Proteínas Relacionadas a Caderinas , Caderinas/genética , Predisposição Genética para Doença , Perda Auditiva Provocada por Ruído/genética , Humanos , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...